АЛГОРИТМИЧЕСКАЯ ПОДОТЧЁТНОСТЬ В СФЕРЕ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА: СОЦИАЛЬНЫЕ, ПРАВОВЫЕ И ОРГАНИЗАЦИОННЫЕ ПОДХОДЫ

Авторы

  • Doniyorbek Imomniyozov

DOI:

https://doi.org/10.47390/SPR1342V5I8Y2025N37

Ключевые слова:

искусственный интеллект, алгоритмическая подотчётность, социальная подотчётность, пользователи, алгоритмический аудит, регуляторы, прозрачность, технологическая этика, информационная безопасность, проектирование алгоритмов

Аннотация

В данной статье анализируется влияние систем искусственного интеллекта на общественную жизнь и вопросы обеспечения подотчётности их деятельности с позиций социальных, правовых и организационных подходов. Раскрываются механизмы эффективного управления алгоритмической подотчётностью, роль заинтересованных сторон и критерии определения ответственности.

Библиографические ссылки

1. Obermeyer Z, Powers B, Vogeli C, Mullainathan S (2019) Dissecting racial bias in an algorithm used to manage the health of populations. Sci 366(6464):447–453. https://doi.org/10.1126/ science.aax2342

2. Blattner L, Nelson S (2021) How costly is noise? Data and disparities in consumer credit. https://doi.org/10.48550/ARXIV.2105.07554

3. Mattu S, Hill K (2022) How a company youʼve never heard of sends you letters about your medical condition*. In: Martin K (ed) Ethics of data and analytics. Auerbach, pp 107–111. https://doi. org/10.1201/9781003278290-17

4. Liu B, Ding M, Shaham S, Rahayu W, Farokhi F, Lin Z (2022) When machine learning meets privacy: a survey and outlook. ACM Comput Surv 54(2):1–36. https://doi.org/10.1145/3436755

5. Novelli C, Taddeo M, Floridi L (2023) Accountability in artificial intelligence: what it is and how it works. AI Soc. https://doi.org/ 10.1007/s00146-023-01635-y

6. Wieringa M (2020) What to account for when accounting for algorithms: a systematic literature review on algorithmic accountability. In: Proceedings of the conference on fairness, accountability, and transparency. https://doi.org/10.1145/ 3351095.3372833

7. Donia J (2022) Normative logics of algorithmic accountability. In: ACM conference on fairness, accountability, and transparency, pp 598–598. https://doi.org/10.1145/3531146.3533123

8. Jobin A, Ienca M, Vayena E (2019) The global landscape of AI ethics guidelines. Nat Mach Intell 1(9):389–399. https://doi.org/10. 1038/s42256-019-0088-2

9. Poechhacker, Nikolaus & Kacianka, Severin. (2021). Algorithmic Accountability in Context. Socio-Technical Perspectives on Structural Causal Models. Frontiers in Big Data. 3. 10.3389/fdata.2020.519957.

10. Bovens M (2007) Analysing and assessing accountability: a concep tual framework. Eur Law J 13(4):447–468. https://doi.org/10. 1111/j.1468-0386.2007.00378.x

11. Wieringa, Maranke. (2020). What to account for when accounting for algorithms: a systematic literature review on algorithmic accountability. 1-18. 10.1145/3351095.3372833.

12. Feuerriegel S, Dolata M, Schwabe G (2020) Fair AI: challenges and opportunities. Bus Inf Syst Eng 62(4):379–384. https://doi.org/ 10.1007/s12599-020-00650-3

13. Lipton ZC (2018) The mythos of model interpretability. Commun ACM 61(10):36–43. https://doi.org/10.1145/3233231

14. Liu B, Ding M, Shaham S, Rahayu W, Farokhi F, Lin Z (2022) When machine learning meets privacy: a survey and outlook. ACM Comput Surv 54(2):1–36. https://doi.org/10.1145/3436755

15. Tocchetti A, Corti L, Balayn A, Yurrita M, Lippmann P, Brambilla M, Yang J (2022) A.I. robustness: a human-centered perspective on technological challenges and opportunities. https://doi.org/10. 48550/ARXIV.2210.08906

16. Bryson JJ, Diamantis ME, Grant TD (2017) Of, for, and by the people: the legal lacuna of synthetic persons. Artif Intell Law 25(3):273–291. https://doi.org/10.1007/s10506-017-9214-9

17. Martin K (2022) Algorithmic bias and corporate responsibility: how companies hide behind the false veil of the technological imperative*. In: Martin K (ed) Ethics of data and analytics. Auerbach, pp. 36–50. https://doi.org/10.1201/9781003278290-7

18. Schneider, Johannes & Abraham, Rene & Meske, Christian & Brocke, Jan vom. (2022). Artificial Intelligence Governance For Businesses. Information Systems Management. 40. 10.1080/10580530.2022.2085825.

19. Mueller B (2022) Corporate digital responsibility. Bus Inf Syst Eng 64(5):689–700. https://doi.org/10.1007/s12599-022-00760-0

20. Shin D, Park YJ (2019) Role of fairness, accountability, and transparency in algorithmic affordance. Comput Hum Behav 98:277–284. https://doi.org/10.1016/j.chb.2019.04.019

21. Buhmann A, Paßmann J, Fieseler C (2020) Managing algorithmic accountability: balancing reputational concerns, engagement strategies, and the potential of rational discourse. J Bus Ethics 163(2):265–280. https://doi.org/10.1007/s10551-019-04226-4

22. Kellogg KC, Valentine MA, Christin A (2020) Algorithms at work: the new contested terrain of control. Acad Manag Ann 14(1):366–410. https://doi.org/10.5465/annals.2018.0174

23. Greʼgoire Y, Fisher RJ (2008) Customer betrayal and retaliation: when your best customers become your worst enemies. J Acad Mark Sci 36(2):247–261. https://doi.org/10.1007/s11747-007-0054-0

24. Benson A, Sojourner A, Umyarov A (2020) Can reputation discipline the gig economy? Experimental evidence from an online labor market. Manag Sci 66(5):1802–1825. https://doi.org/10.1287/ mnsc.2019.3303

25. Slota SC, Fleischmann KR, Greenberg S, Verma N, Cummings B, Li L, Shenefiel C (2021) Many hands make many fingers to point: challenges in creating accountable AI. AI Soc. https://doi.org/10. 1007/s00146-021-01302-0

26. Stahl BC (2021) Addressing ethical issues in AI. In: Stahl BC (ed) Artificial intelligence for a better future. Springer, pp 55–79. https://doi.org/10.1007/978-3-030-69978-9_5

27. Mattu S, Hill K (2022) How a company youʼve never heard of sends you letters about your medical condition*. In: Martin K (ed) Ethics of data and analytics. Auerbach, pp 107–111. https://doi. org/10.1201/9781003278290-17

28. Raji ID, Xu P, Honigsberg C, Ho D (2022) Outsider oversight: designing a third party audit ecosystem for AI governance. In: Proceedings of the 2022 AAAI/ACM conference on AI, ethics, and society, pp 557–571. https://doi.org/10.1145/3514094. 3534181

29. Metcalf J, Moss E, Watkins EA, Singh R, Elish MC (2021) Algorithmic impact assessments and accountability: the co construction of impacts. In: Proceedings of the 2021 ACM conference on fairness, accountability, and transparency, pp 735–746. https://doi.org/10.1145/3442188.3445935

30. Martin K, Waldman A (2022) Are algorithmic decisions legitimate? The effect of process and outcomes on perceptions of legitimacy of AI decisions. J Bus Ethics. https://doi.org/10.1007/s10551 021-05032-7

31. Ma¨ntyma¨ki M, Minkkinen M, Birkstedt T, Viljanen M (2022) Defining organizational AI governance. AI Ethics. https://doi. org/10.1007/s43681-022-00143-x

32. Feuerriegel S, Dolata M, Schwabe G (2020) Fair AI: challenges and opportunities. Bus Inf Syst Eng 62(4):379–384. https://doi.org/ 10.1007/s12599-020-00650-3

33. Jobin A, Ienca M, Vayena E (2019) The global landscape of AI ethics guidelines. Nat Mach Intell 1(9):389–399. https://doi.org/10. 1038/s42256-019-0088-2

34. Schneider J, Abraham R, Meske C, Vom Brocke J (2022) Artificial intelligence governance for businesses. Inf Syst Manag. https:// doi.org/10.1080/10580530.2022.2085825

Загрузки

Прислана

2025-08-09

Опубликован

2025-08-10

Как цитировать

Imomniyozov, D. (2025). АЛГОРИТМИЧЕСКАЯ ПОДОТЧЁТНОСТЬ В СФЕРЕ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА: СОЦИАЛЬНЫЕ, ПРАВОВЫЕ И ОРГАНИЗАЦИОННЫЕ ПОДХОДЫ. Ижтимоий-гуманитар фанларнинг долзарб муаммолари Актуальные проблемы социально-гуманитарных наук Actual Problems of Humanities and Social Sciences., 5(8), 240–250. https://doi.org/10.47390/SPR1342V5I8Y2025N37